## Study on the Chemical Constituents of Daphniphyllum angustifolium

by Haiyun Bai<sup>a</sup>)<sup>b</sup>) and Lihong Hu<sup>\*a</sup>)<sup>b</sup>)

 <sup>a</sup>) Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 201203, China
 <sup>b</sup>) School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

(e-mail: simmhulh@mail.shcnc.ac.cn)

Seven new iridoid glucosides, **1**–**7**, two new phenyl glucosides, **8** and **9**, along with eight known compounds were isolated from the bark of *Daphniphyllum angustifolium*. Their structures were established by ESI-MS and by 1D- and 2D-NMR spectroscopic methods.

**Introduction.** – Iridoids are of biogenetic and chemotaxonomic importance and are found mainly as glycosides in higher plants. A number of iridoid glucosides [1] and *Daphniphyllum* alkaloids [2] have been reported from the family Daphniphyllaceae. *Daphniphyllum angustifolium* is a shrub native to China. No study concerning its chemical constituents has been reported previously. We have examined the EtOH extract of the bark of *D. angustifolium*, and succeeded in isolating the seven new iridoid glucosides **1–7** and the two new phenyl glucosides **8** and **9**, along with eight known compounds.

**Results and Discussion.** – The dried plant material was extracted with 95% EtOH, and the concentrate was partitioned between  $H_2O$  and  $CHCl_3$ . The  $H_2O$ -soluble part was fractionated by means of a macroporous resin column, affording four groups of eluates, which yielded the seven new iridoid glucosides 1-7 and the two new phenyl glucosides **8** and **9** (see *Fig. 1*), together with four known compounds, after further chromatographic purification. The  $CHCl_3$ -soluble part yielded four known compounds after repeated chromatographic purification.

The known compounds were characterized by detailed NMR analyses to be daphylloside (**10**) [1], 10-*O*-deacetylasperulosidic acid methyl ester [3], (–)-epiafzelechin 7-*O*- $\beta$ -D-glucopyranoside [4], urolignoside [5], concarpan [6], eupomatenoid-6 [6], 28hydroxyllupen-3-one [7], and stigmast-5-ene-3,7,16-triol [8].

Compound **1** was obtained as an optically active white powder. Its IR spectrum showed the presence of OH groups ( $3411 \text{ cm}^{-1}$ ) and of a  $\gamma$ -lactone ( $1739 \text{ cm}^{-1}$ ). The ESI-MS exhibited quasi-molecular ions  $[M+H]^+$  at m/z 519 and  $[M-H]^-$  at m/z 517, suggesting a molecular formula of C<sub>25</sub>H<sub>26</sub>O<sub>12</sub>, which was confirmed by the quasi-molecular ion  $[M+H]^+$  at m/z 519.1510 generated by HR-ESI-MS. The <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DEPT, HMQC, and HMBC spectra (see *Table 1*) suggested that **1** has a

<sup>© 2006</sup> Verlag Helvetica Chimica Acta AG, Zürich



Fig. 1. The structures of compounds 1-10

10-*O*-deacetylasperuloside skeleton [9]. Acid hydrolysis [10] of **1** yielded D-glucose. The structure of **1** was established as 10-*O*-coumaroyl-10-*O*-deacetylasperuloside<sup>1</sup>).

The presence of a coumaroyloxy group (C(12) to C(20)<sup>1</sup>) in **1** gave rise to <sup>13</sup>C-NMR signals at  $\delta$  168.6 (C(12)), 114.6 (CH(13)), 147.4 (CH(14)), 127.1 (C(15)), 131.5 (CH(16), CH(20)), 117.0 (CH(17), CH(19)), and 161.5 (C(18)). Signals of a  $\beta$ -D-glucosyl group (C(1') to C(6')) at  $\delta$  100.1 (CH(1')), 74.7 (CH(2')), 77.9 (CH(3')), 71.6 (CH(4')), 78.4 (CH(5')), 62.8 (CH<sub>2</sub>(6')) and of an iridoid moiety (C(1) and C(3) to C(11)<sup>1</sup>) at δ 93.5 (CH(1)), 150.5 (CH(3)), 106.2 (C(4)), 37.4 (CH(5)), 86.4 (CH(6)), 129.1 (CH(7)), 144.5 (C(8)), 45.4 (CH(9)), 61.8 (CH<sub>2</sub>(10)), and 173.0 (C(11)) were compatible with the proposed structure of 1. The <sup>1</sup>H- and <sup>13</sup>C-NMR and HMBC spectra also indicated the presence of an ester C=O and two trisubstituted C=C moieties in the iridoid skeleton. Thirteen degrees of unsaturation were deduced from the molecular formula  $C_{25}H_{26}O_{12}$ . The ten degrees of unsaturation accounting for the coumaroyl  $\beta$ -D-glucosyl, ester C=O, and two C=C moieties left three degrees of unsaturation which were attributed to a tricyclic ring system, suggesting that **1** has a 10-O-deacetylasperuloside skeleton [9]. The hydrolysis product of 1 was identified as D-glucose by GC analysis of its leucine derivative, which was compared with a reference compound. The chemical shifts and the shape of the signal for the anomeric center, *i.e.*,  $\delta$  4.72 (d, J=7.8 Hz, H–C(1')) and  $\delta$  100.1 (C(1')) indicated a  $\beta$ -D-configuration for the glucosyl unit. The cross-peaks in the HMBC spectrum of 1 between the CH<sub>2</sub>(10) signals at  $\delta$  4.76 and 4.89 and the ester carbonyl signal at  $\delta$  168.6 (C(12)) established that the coumaroyloxy moiety is located at C(10), and the correlation between H–C(1') at 4.72 and C(1) at  $\delta$  93.5 demonstrated that the  $\beta$ -D-glucosyloxy group is attachted at C(1).

<sup>&</sup>lt;sup>1</sup>) Trivial numbering, for systematic names, see *Exper. Part.* 

|                      | $\delta(\mathrm{H})^{\mathrm{a}})$                            | $\delta(C)^{b})$ | HMBC <sup>c</sup> )             | <sup>1</sup> H, <sup>1</sup> H-COSY <sup>a</sup> ) | NOE <sup>a</sup> )               |
|----------------------|---------------------------------------------------------------|------------------|---------------------------------|----------------------------------------------------|----------------------------------|
| H–C(1)               | 6.04 (br. s)                                                  | 93.5             | C(3), C(9), C(1')               | H–C(9)                                             | CH <sub>2</sub> (10),<br>H–C(1') |
| H–C(3)<br>C(4)       | 7.29 (s)                                                      | 150.5<br>106.2   | C(1), C(4), C(11)               | H–C(5)                                             |                                  |
| H–C(5)               | 3.33–3.40 <i>(m)</i>                                          | 37.4             | C(1), C(3), C(7),<br>C(8), C(9) | H–C(3), H–C(6),<br>H–C(9)                          | H–C(6),<br>H–C(9)                |
| H–C(6)               | 5.55 (br. <i>d</i> , <i>J</i> =6.0)                           | 86.4             | C(5), C(7), C(8),<br>C(11)      | H–C(5), H–C(7),<br>H–C(9)                          | H–C(5)                           |
| H–C(7)<br>H–C(8)     | 5.77 (s)                                                      | 129.1<br>144.5   | C(8)                            | H–C(9), H–C(10)                                    |                                  |
| H–C(9)               | 3.22-3.27 <i>(m)</i>                                          | 45.4             | C(10)                           | H–C(1), H–C(5),<br>H–C(6), H–C(7)                  | H–C(5)                           |
| CH <sub>2</sub> (10) | 4.76 (br. $d, J=14.3$ ),<br>4.89 (br. $d, J=14.3$ )           | 61.8             | C(8), C(9), C(12)               | H–C(7), H–C(9)                                     | H–C(1)                           |
| C(11)<br>C(12)       |                                                               | 173.0<br>168.6   |                                 |                                                    |                                  |
| H–C(13)              | 6.37 (d, J = 15.9)                                            | 114.6            | C(12), C(14), C(15)             | H-C(14)                                            | H–C(14)                          |
| H–C(14)<br>C(15)     | 7.65 $(d, J = 15.9)$                                          | 147.4<br>127.1   | C(12), C(13), C(16)             | H–C(13)                                            | H–C(13)                          |
| H–C(16)              | 7.54 $(d, J = 8.4)$                                           | 131.5            | C(14), C(18)                    | H–C(17)                                            | H–C(13),<br>H–C(17)              |
| H–C(17)<br>C(18)     | 6.87 (d, J = 8.4)                                             | 117.0<br>161.5   | C(15), C(18)                    | H–C(16)                                            | H–C(16)                          |
| H–C(19)              | 6.87 (d, J = 8.4)                                             | 117.0            | C(15), C(18)                    | H-C(20)                                            | H–C(16)                          |
| H–C(20)              | 7.54 (d, J = 8.4)                                             | 131.5            | C(14), C(18)                    | H–C(19)                                            | H–C(13),<br>H–C(19)              |
| H–C(1′)              | 4.72 (d, J = 7.8)                                             | 100.1            | C(1), C(6')                     |                                                    | H-C(1)                           |
| H–C(2')              | 3.30 - 3.47 (m)                                               | 74.7             |                                 |                                                    |                                  |
| H–C(3')              | 3.30 - 3.47(m)                                                | 77.9             |                                 |                                                    |                                  |
| H–C(4′)              | 3.30 - 3.47(m)                                                | 71.6             |                                 |                                                    |                                  |
| H–C(5')              | 3.30 - 3.47(m)                                                | 78.4             |                                 |                                                    |                                  |
| CH <sub>2</sub> (6') | 3.64 ( $dd$ , $J = 12.0$ , 6.3),<br>3.86 ( $d$ , $J = 12.0$ ) | 62.8             |                                 |                                                    |                                  |

Table 1. <sup>*I*</sup>*H*- and <sup>*I*</sup><sup>3</sup>*C*-*NMR*, *HMBC*, and *NOESY Data of*  $\mathbf{1}^{1}$ ).  $\delta$  in ppm, *J* in Hz.

<sup>a</sup>) Recorded in CD<sub>3</sub>OD at 300 MHz. <sup>b</sup>)Recorded in CD<sub>3</sub>OD at 75 MHz. <sup>c</sup>) Protons that correlate with Catoms.

The configurations at C(1), C(5), C(6), and C(9) of **1** were determined by NOE correlations as shown in *Fig. 2* and in *Table 1*. The NOEs between H-C(5), H-C(6), and H-C(9) indicated that they were *cis*positioned to each other ( $\beta$ -configuration), and the absence of NOEs between H-C(1) and H-C(9) suggested that they are located on opposite faces of the dihydro pyrane ring.

Compound **2** was obtained as an optically active white powder. The ESI-MS exhibited a quasi-molecular ion  $[M+Na]^+$  at m/z 499 suggesting a molecular formula  $C_{23}H_{24}O_{11}$ , which was confirmed by a quasi-molecular ion  $[M+Na]^+$  at m/z 499.1211 generated by HR-ESI-MS. Compound **2** had similar UV features to those of **1**. A com-



Fig. 2. Important NOE correlations of 1 and 3

|                      | $\delta(\mathrm{H})^{\mathrm{a}})$     | $\delta(C)^{b})$ | HMBC <sup>c</sup> )     | NOE <sup>a</sup> )            |
|----------------------|----------------------------------------|------------------|-------------------------|-------------------------------|
| H–C(1)               | 6.06 (br. s)                           | 93.6             | C(3), C(9), C(1')       | CH <sub>2</sub> (10), H–C(1') |
| H-C(3)               | 7.31 (d, J = 1.8)                      | 150.4            | C(1), C(4), C(11)       |                               |
| C(4)                 |                                        | 106.4            | C(4), C(7), C(8)        |                               |
| H-C(5)               | 3.29–3.32 ( <i>m</i> )                 | 37.6             | C(4), C(7), C(8)        | H-C(6), H-C(9)                |
| H-C(6)               | 5.58 (br. $d, J = 6.0$ )               | 86.4             | C(8), C(11)             | H–C(5)                        |
| H-C(7)               | 5.82 (s)                               | 129.5            | C(5), C(6), C(9)        |                               |
| C(8)                 |                                        | 144.4            |                         |                               |
| H-C(9)               | 3.17–3.21 <i>(m)</i>                   | 45.6             | C(1), C(5), C(10)       | H–C(5)                        |
| $CH_{2}(10)$         | 4.90 (d, J = 13.8), 5.03 (d, J = 13.8) | 62.7             | C(7), C(8), C(9), C(12) | H–C(1)                        |
| C(11)                |                                        | 172.7            |                         |                               |
| C(12)                |                                        | 167.5            |                         |                               |
| C(13)                |                                        | 131.0            |                         |                               |
| H–C(14)              | 8.03 (d, J=7.2)                        | 130.8            | C(12), C(15), C(16)     | H–C(15)                       |
| H–C(15)              | 7.49(t, J=7.2)                         | 129.8            | C(13), C(14)            | H-C(14), H-C(16)              |
| H–C(16)              | 7.61 $(t, J=7.2)$                      | 134.7            | C(14)                   | H–C(15)                       |
| H–C(17)              | 7.49(t, J=7.2)                         | 129.8            | C(16), C(18)            | H-C(16), H-C(18)              |
| H–C(18)              | 8.03 (d, J=7.2)                        | 130.8            | C(13), C(17)            | H–C(17)                       |
| H-C(1')              | 4.68(d, J=8.1)                         | 100.2            | C(1)                    | H–C(1)                        |
| H-C(2')              | 3.18–3.40 <i>(m)</i>                   | 74.7             |                         |                               |
| H–C(3')              | 3.18–3.40 <i>(m)</i>                   | 77.9             |                         |                               |
| H-C(4')              | 3.18–3.40 <i>(m)</i>                   | 71.6             |                         |                               |
| H–C(5′)              | 3.18–3.40 <i>(m)</i>                   | 78.4             |                         |                               |
| CH <sub>2</sub> (6') | 3.71 (d, J = 12.0), 3.86 (d, J = 12.0) | 62.8             |                         |                               |

Table 2. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR*, *HMBC*, and *NOESY Data of*  $2^{1}$ ).  $\delta$  in ppm, *J* in Hz.

<sup>a</sup>) Recorded in CD<sub>3</sub>OD at 300 MHz. <sup>b</sup>) Recorded in CD<sub>3</sub>OD at 75 MHz. <sup>c</sup>) Protons that correlate with Catoms.

parison of the <sup>1</sup>H- and <sup>13</sup>C-NMR data of **2** (*Table 2*) with those of **1** revealed that the only difference was that the coumaroyloxy moiety in compound **1** is replaced by a benzoyloxy group in compound **2**. The position of the benzoyloxy group was also assigned to C(10), which was confirmed by HMBC experiments (correlation CH<sub>2</sub>(10) ( $\delta$  4.90 and 5.03) C(12) ( $\delta$  165.2)). Thus, the structure of **2** was identified as 10-*O*-benzoyl-10-*O*-deacetylasperuloside<sup>1</sup>).

Compound **3** was obtained as an optically active white powder. The ESI-MS exhibited quasi-molecular ions  $[M + Na]^+$  at m/z 573 and  $[M - H]^-$  at m/z 549, suggesting a

|                      | $\delta({ m H})^{ m a})$                                                      | $\delta(C)^{b})$ | HMBC <sup>c</sup> )          | NOE <sup>a</sup> )            |
|----------------------|-------------------------------------------------------------------------------|------------------|------------------------------|-------------------------------|
| H-C(1)               | 4.99(d, J=9.0)                                                                | 99.6             | C(3), C(9), C(1')            | CH <sub>2</sub> (10), H–C(1') |
| H-C(3)               | 7.63(s)                                                                       | 153.2            | C(1), C(4), C(11)            |                               |
| C(4)                 |                                                                               | 107.2            |                              |                               |
| H–C(5)               | 2.91(t, J = 6.6)                                                              | 40.8             | C(1), C(3), C(7), C(8), C(9) | H-C(6), H-C(9)                |
| H–C(6)               | 4.64 (br. $d, J = 6.0$ )                                                      | 73.2             | C(5), C(7), C(8), C(11)      | H–C(5)                        |
| H–C(7)               | 6.00 (br. <i>s</i> )                                                          | 131.8            | C(8)                         |                               |
| C(8)                 |                                                                               | 143.0            |                              |                               |
| H–C(9)               | 2.55(t, J=7.8)                                                                | 44.8             | C(10)                        | H–C(5)                        |
| CH <sub>2</sub> (10) | 4.80 (br. <i>d</i> , <i>J</i> =15.3),<br>4.90 (br. <i>d</i> , <i>J</i> =15.3) | 61.0             | C(8), C(9), C(12)            | H–C(1)                        |
| C(11)                |                                                                               | 166.9            |                              |                               |
| C(12)                |                                                                               | 166.3            |                              |                               |
| H–C(13)              | 6.44 (d, J = 15.9)                                                            | 113.9            | C(12), C(14), C(15)          | H–C(14)                       |
| H–C(14)              | 7.58 - 7.62 (m)                                                               | 145.1            | C(12), C(13), C(16)          | H–C(13)                       |
| C(15)                |                                                                               | 125.1            |                              |                               |
| H–C(16)              | 7.54 - 7.58(m)                                                                | 130.5            | C(14), C(18)                 | H–C(17)                       |
| H–C(17)              | 6.79 (d, J = 9.0)                                                             | 115.9            | C(15), C(18)                 | H–C(16)                       |
| C(18)                |                                                                               | 160.1            |                              |                               |
| H–C(19)              | 6.79 (d, J = 9.0)                                                             | 115.9            | C(15), C(18)                 | H–C(16)                       |
| H–C(20)              | 7.58 - 7.62 (m)                                                               | 130.5            | C(14), C(18)                 | H–C(19)                       |
| MeO                  | 3.20 (s)                                                                      | 51.2             | C(11)                        |                               |
| H–C(1′)              | 4.59(d, J=8.1)                                                                | 99.1             | C(1)                         | H–C(1)                        |
| H–C(2')              | 3.02 - 3.22 (m)                                                               | 73.4             |                              |                               |
| H–C(3')              | 3.02 - 3.22 (m)                                                               | 76.6             |                              |                               |
| H–C(4')              | 3.02 - 3.22 (m)                                                               | 69.9             |                              |                               |
| H–C(5')              | 3.02 - 3.22 (m)                                                               | 77.2             |                              |                               |
| CH <sub>2</sub> (6') | 3.43 ( <i>dd</i> , <i>J</i> =11.9, 4.8),<br>3.64–3.66 ( <i>m</i> )            | 62.0             |                              |                               |

Table 3. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR*, *HMBC*, and *NOESY Data of* **3**<sup>1</sup>). δ in ppm, *J* in Hz.

<sup>a</sup>) Recorded in (D<sub>6</sub>)DMSO at 300 MHz. <sup>b</sup>) Recorded in DMSO at 75 MHz. <sup>c</sup>) Protons that correlate with C-atoms.

molecular formula  $C_{26}H_{30}O_{13}$ , which was confirmed by a quasi-molecular ion  $[M + Na]^+$  at m/z 573.1580 generated by HR-ESI-MS. The <sup>1</sup>H- and <sup>13</sup>C-NMR, DEPT, HMQC, and HMBC spectra (see *Table 3*) suggested the presence of a 10-*O*-deacetyldaphylloside skeleton. A direct comparison of the spectral data of **3** with those of daphylloside (**10**), which was also isolated from the title plant, indicated that **3** is an analogue of **10**, both compounds possessing the same daphylloside skeleton. The only difference between compound **3** and **10** was that the acetyloxy group at position 10 in compound **10** is replaced by a coumaroyloxy group in compound **3**. Thus, the structure of **3** was established 10-*O*-coumaroyl-10-*O*-deacetyldaphylloside.

The presence of a coumaroyloxy group (C(12) to C(20)<sup>1</sup>)) in **3** was established by the <sup>13</sup>C-NMR signals at  $\delta$  166.3 (C(12)), 113.9 (CH(13)), 145.1 (CH(14)), 125.1 (C(15)), 130.5 (CH(16), CH(20)), 115.9 (CH(17), CH(19)), and 160.1 (C(18)) that of a  $\beta$ -D-glucosyl group (C(1') to C(6')) by the signals at  $\delta$  99.1 (CH(1')), 73.4 (CH(2')), 76.6 (CH(3')), 69.9 (CH(4')), 77.2 (CH(5')), and 62.0 (CH<sub>2</sub>(6')), that of a MeO group by  $\delta$  51.2 and the 10 C-atoms of the iridoid skeleton (C(1) and C(3) to C(11)<sup>1</sup>)) by the signals

nals at  $\delta$  99.6 (CH(1)), 153.2 (CH(3)), 107.2 (C(4)), 40.8 (CH(5)), 73.2 (CH(6)), 131.8 (CH(7)), 143.0 (C(8)), 44.8 (CH(9)), 61.0 (CH<sub>2</sub>(10)), and 166.9 (C(11)). The <sup>1</sup>H- and <sup>13</sup>C-NMR and HMBC spectra also indicated the presence of an ester C=O and two trisubstituted C=C moieties in the iridoid skeleton. The HMBC correlations MeO ( $\delta$  3.20)/C(11) ( $\delta$  166.9) and H–C(1') ( $\delta$  4.59)/C(1) ( $\delta$  99.6) indicated that the MeO group was located at C(11) and the  $\beta$ -D-glucosyloxy group at C(1). The position of the coumaroyloxy group of **3** was assigned to C(10) by the HMBC cross-peaks CH<sub>2</sub>(10) ( $\delta$  4.80 and 4.90)/C(12) ( $\delta$  166.3).

The configurations at C(1), C(5), C(6), and C(9) were determined by NOE correlations as shown in *Fig. 2* and in *Table 3*. The NOEs between H–C(5), H–C(6), and H–C(9) indicated that they were in *cis*position to each other ( $\beta$ -configuration), and the absence of NOEs between H–C(1) and H–C(9) suggested the  $\alpha$ -configuration of H–C(1).

Compound **4** was obtained as an optically active white powder. The molecular formula  $C_{27}H_{32}O_{13}$  was confirmed by a quasi-molecular ion  $[M-H]^-$  at m/z 563.1770 generated by HR-ESI-MS. Compound **4** had similar UV features to those of **3**. A comparison of the <sup>1</sup>H- and <sup>13</sup>C-NMR data of **4** (see *Tables 4* and 5) with those of **3** revealed that the only difference consists in compound **4** having an EtO group at C(11) instead of the

|                        | <b>4</b> <sup>a</sup> )           | <b>5</b> <sup>b</sup> )          | <b>6</b> <sup>a</sup> )   | <b>7</b> <sup>a</sup> )   |
|------------------------|-----------------------------------|----------------------------------|---------------------------|---------------------------|
| H-C(1)                 | 5.09(d, J=9.0)                    | 5.14(d, J = 5.1)                 | 5.10 (d, J = 9.0)         | 5.06 (d, J = 9.0)         |
| H-C(3)                 | 7.63(s)                           | 7.66(s)                          | 7.64 $(d, J = 1.2)$       | 7.65 (d, J = 1.2)         |
| H-C(5)                 | 3.02(t, J=6.6)                    | 2.94(t, J = 6.6)                 | 3.07(t, J = 6.6)          | 3.05(t, J=8.1)            |
| H–C(6)                 | 4.78 (br. $d, J = 6.0$ )          | 4.74 (d, J = 6.0)                | 4.78-4.82 (m)             | 4.77-4.87 ( <i>m</i> )    |
| H–C(7)                 | 6.03 (br. s)                      | 6.08 (br. s)                     | 6.09 (br. s)              | 6.02 (br. s)              |
| H-C(9)                 | 2.65 $(t, J=8.1)$                 | 2.61 $(t, J = 8.1)$              | 2.68(t, J=8.1)            | 2.63(t, J=8.1)            |
| $CH_{2}(10)$           | 4.78–4.82 ( <i>m</i> ),           | 4.99(d, J = 15.3),               | 5.01 (br. d, J=15.3),     | 4.77–4.87 ( <i>m</i> ),   |
|                        | 5.08(d, J = 15.3)                 | 5.04(d, J = 15.3)                | 5.22 (br. d, J=15.3)      | 4.94(d, J = 15.3)         |
| H–C(13)                | 6.35 (d, J = 16.2)                |                                  |                           |                           |
| H–C(14)                | 7.63 $(d, J = 16.2)$              | 8.03 (d, J = 7.2)                | 8.04 (d, J = 7.2)         |                           |
| H–C(15)                |                                   | 7.55 $(t, J=7.2)$                | 7.48 $(t, J=7.2)$         |                           |
| H-C(16)                | 7.45 $(d, J=9.0)$                 | 7.66 $(t, J=7.2)$                | 7.60(t, J=7.2)            |                           |
| H–C(17)                | 6.78 (d, J = 9.0)                 | 7.55 $(t, J=7.2)$                | 7.48 $(t, J=7.2)$         |                           |
| H–C(18)                |                                   | 8.03 (d, J = 7.2)                | 8.04 (d, J = 7.2)         |                           |
| H–C(19)                | 6.78 (d, J = 9.0)                 |                                  |                           |                           |
| H-C(20)                | 7.45 $(d, J=9.0)$                 |                                  |                           |                           |
| $MeCH_2O$              | 4.17 (q, J = 7.2)                 | 3.35 (s)                         | 4.17 (q, J = 7.2)         | 4.17 (q, J = 7.2)         |
| or MeO                 |                                   |                                  |                           |                           |
| MeCH <sub>2</sub> O    | 1.27 (t, J = 7.2)                 |                                  | 1.27 (t, J = 7.2)         | 1.27 (t, J = 7.2)         |
| H–C(1′)                | 4.72 (d, J = 7.2)                 | 4.59(d, J=7.5)                   | 4.73 (d, J = 7.2)         | 4.72 (d, J = 7.5)         |
| H–C(2′)                | 3.23–3.39 ( <i>m</i> )            | 2.98–3.19 (m)                    | 3.23–3.40 ( <i>m</i> )    | 3.23–3.39 ( <i>m</i> )    |
| H–C(3′)                | 3.23–3.39 ( <i>m</i> )            | 2.98–3.19 (m)                    | 3.02-3.22 ( <i>m</i> )    | 3.23–3.39 ( <i>m</i> )    |
| H–C(4′)                | 3.23–3.39 ( <i>m</i> )            | 2.98–3.19 (m)                    | 3.02-3.22 ( <i>m</i> )    | 3.23–3.39 ( <i>m</i> )    |
| H–C(5′)                | 3.23–3.39 ( <i>m</i> )            | 2.98–3.19 (m)                    | 3.02-3.22 ( <i>m</i> )    | 3.23–3.39 ( <i>m</i> )    |
| CH <sub>2</sub> (6')   | 3.57 (dd, J = 6.9, 2.0),          | 3.39–3.42 ( <i>m</i> ),          | 3.60 (dd, J = 5.4, 12.0), | 3.61 (dd, J = 5.7, 11.7), |
|                        | 3.84 (d, J = 12.0)                | 3.60–3.64 ( <i>m</i> )           | 3.86 (d, J = 12.0)        | 3.84(d, J = 11.7)         |
| AcO                    |                                   |                                  |                           | 2.08 (s)                  |
| <sup>a</sup> ) Recorde | d in CD <sub>3</sub> OD at 300 MH | z. <sup>b</sup> ) Recorded in (D | )DMSO at 300 MHz.         |                           |

Table 4. <sup>1</sup>*H*-*NMR Data of*  $\mathbf{4}$ - $\mathbf{7}^{1}$ ).  $\delta$  in ppm, *J* in Hz.

| Table 5. <sup>13</sup> C-NMR Data of $4$ - $7^1$ ). $\delta$ in ppr | n. |
|---------------------------------------------------------------------|----|
|---------------------------------------------------------------------|----|

|                                                 | <b>4</b> <sup>a</sup> )         | <b>5</b> <sup>b</sup> )        | <b>6</b> <sup>a</sup> ) | <b>7</b> <sup>a</sup> ) |
|-------------------------------------------------|---------------------------------|--------------------------------|-------------------------|-------------------------|
| C(1)                                            | 101.5                           | 99.6                           | 101.5                   | 101.4                   |
| C(3)                                            | 155.4                           | 153.2                          | 155.4                   | 155.3                   |
| C(4)                                            | 108.5                           | 107.2                          | 108.5                   | 108.5                   |
| C(5)                                            | 42.6                            | 40.7                           | 42.6                    | 42.5                    |
| C(6)                                            | 75.0                            | 73.4                           | 75.0                    | 75.0                    |
| C(7)                                            | 131.8                           | 131.9                          | 131.4                   | 131.9                   |
| C(8)                                            | 146.3                           | 142.7                          | 146.1                   | 146.0                   |
| C(9)                                            | 48.3                            | 44.8                           | 46.6                    | 46.3                    |
| C(10)                                           | 61.4                            | 61.0                           | 61.4                    | 61.4                    |
| C(11)                                           | 169.0                           | 166.9                          | 169.1                   | 172.6                   |
| C(12)                                           | 168.9                           | 165.4                          | 167.8                   |                         |
| C(13)                                           | 114.9                           | 129.6                          | 131.4                   |                         |
| C(14)                                           | 147.2                           | 129.4                          | 130.8                   |                         |
| C(15)                                           | 127.1                           | 128.9                          | 129.8                   |                         |
| C(16)                                           | 131.4                           | 133.5                          | 134.6                   |                         |
| C(17)                                           | 117.1                           | 128.9                          | 129.8                   |                         |
| C(18)                                           | 161.7                           | 129.4                          | 130.8                   |                         |
| C(19)                                           | 117.1                           |                                |                         |                         |
| C(20)                                           | 131.4                           |                                |                         |                         |
| C(1')                                           | 100.8                           | 99.1                           | 100.8                   | 100.7                   |
| C(2')                                           | 75.6                            | 73.4                           | 75.6                    | 75.6                    |
| C(3')                                           | 77.9                            | 76.5                           | 78.0                    | 78.0                    |
| C(4')                                           | 71.6                            | 69.9                           | 71.6                    | 71.6                    |
| C(5')                                           | 78.7                            | 77.2                           | 78.7                    | 78.7                    |
| C(6')                                           | 63.1                            | 62.8                           | 63.1                    | 63.1                    |
| MeCH <sub>2</sub> O or MeO                      | 63.8                            | 51.1                           | 64.4                    | 63.9                    |
| MeCH <sub>2</sub> O                             | 14.7                            |                                | 14.7                    | 14.7                    |
| -OAc                                            |                                 |                                |                         | 169.0, 20.9             |
| <sup>a</sup> ) Recorded in CD <sub>3</sub> OD a | t 75 MHz. <sup>b</sup> ) Record | led in (D <sub>6</sub> )DMSO a | t 75 MHz.               |                         |

MeO group. Its structure was established as 10-*O*-coumaroyl-10-*O*-deacetyl-11-deme-thoxy-11-daphylloside<sup>1</sup>).

Compound **5** was obtained as an optically active white powder. The molecular formula  $C_{24}H_{28}O_{12}$  was confirmed by a quasi-molecular ion  $[M + H]^+$  at m/z 509.1663 generated by HR-ESI-MS. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **5** (see *Tables 4* and 5) were similar to those of **3**, except for the substituent at C(10). Comparison of the <sup>1</sup>H- and <sup>13</sup>C-NMR and HMBC spectra established that the only difference between **5** and **3** was that **5** had a benzoyloxy group at C(10) instead of the coumaroyloxy group. The structure of a 10-*O*-benzoyl-10-*O*-deacetyldaphylloside<sup>1</sup>) for **5** was confirmed by its <sup>1</sup>H,<sup>1</sup>H-COSY, HMQC, HMBC, and NOESY spectra.

Also compound **6** was optically active and obtained as a white powder. The molecular formula  $C_{25}H_{30}O_{12}$  was confirmed by a quasi-molecular ion  $[M + COOH]^-$  at m/z 567.1710 generated by HR-ESI-MS. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **6** (see *Tables 4* and 5) were similar to those of **3**. Comparison of the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **6** 

and **3** established the structure of **6** as 10-*O*-benzoyl-10-*O*-deacetyl-11-demethoxy-11-ethoxydaphylloside<sup>1</sup>).

Compound **7** was optically active and obtained as a white powder. The molecular formula  $C_{20}H_{28}O_{12}$  was confirmed by a quasi-molecular ion  $[M+H]^+$  at m/z 461.1664 generated by HR-ESI-MS. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **7** (see *Tables 4* and 5) were similar to those of daphylloside (**10**). A comparison of the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **7** and **10** revealed that the only difference was the presence of an EtO group at C(11) in **7** compared to a MeO group in **10**. The configurations at C(1), C(5), C(6), and C(9) were confirmed by the NOESY data. Thus, the structure of **7** was established as 11-demethoxy-11-ethoxydaphylloside<sup>1</sup>).

Compound **8** was obtained as an optically active white powder. The molecular formula  $C_{23}H_{34}O_{12}$  was confirmed by a quasi-molecular ion  $[M + H]^+$  at m/z 503.2124 generated by HR-ESI-MS. Acid hydrolysis of **8** yielded D-glucose and L-rhamnose, identified by GC analysis of their leucine derivatives which were compared with reference samples. The <sup>1</sup>H- and <sup>13</sup>C-NMR, <sup>1</sup>H,<sup>1</sup>H-COSY, HMQC, and HMBC experiments (*Table 6*) established the structure of **8** as 2,6-dimethoxy-4[(1*E*)-prop-1-enyl]phenyl  $O-\alpha$ -L-rhamnopyranosyl-(1  $\rightarrow$  6)- $\beta$ -D-glucopyranoside.

The presence of a CH=CH–Me group  $(C(7) \text{ to } C(9)^1))$  in **8** was indicated by the <sup>13</sup>C-NMR signals at  $\delta$  132.2 (CH(7)), 126.5 (CH(8)), 18.7 (Me(9)). The tetrasubstituted benzene moiety (C(1) to C(6)<sup>1</sup>)) gave rise to signals at δ 135.3 (C(1)), 154.5 (C(2)), 104.8 (CH(3)), 136.4 (C(4)), 104.8 (CH(5)), and 154.5 (C(6)), the  $\beta$ -D-glucosyl moiety (C(1') to C(6')) to  $\delta$  105.6 (CH(1')), 75.7 (CH(2')), 77.9 (CH(3')), 71.8 (CH(4')), 77.4 (CH(5')), and 68.1  $(CH_2(6'))$ , and the  $\alpha$ -L-rhamnosyl moiety (C(1'') to C(6'')) to  $\delta$  102.2 (CH(1")), 72.4 (CH(2")), 72.2 (CH(3")), 74.1 (CH(4")), 69.8 (CH(5")), and 18.2 (Me(6")). Finally two MeO groups appeared at  $\delta$  57.1. The value of the coupling J(7,8) = 15.6 Hz in the <sup>1</sup>H-NMR spectrum indicated an (E)-CH=CH-Me group. The chemical shifts and the shape of the signals for the anomeric centers ( $\delta$  4.75 (d, J=7.8 Hz, H–C(1')), and 105.6 (CH(1'),  $\delta$  4.67 (s, H–C(1'')) and  $\delta$  102.2 (C(1'')) indicated a  $\beta$ -D-configuration for the glucosyl unit and a  $\alpha$ -L-configuration for the rhamnosyl unit. Their positions were determined by  ${}^{13}C$ , H long-range connectivities: i) The correlations H-C(7) ( $\delta$  6.34)/C(4) ( $\delta$  136.4) and C(3) and C(5) ( $\delta$  104.8), and H–C(8) ( $\delta$  6.23–6.26)/C(4) ( $\delta$  136.4) established that the (E)-CH= CH-Me moiety was located at C(4). ii) The correlation H-C(1') ( $\delta$  4.75)/C(1) ( $\delta$  135.3) allowed to position the glucosyloxy unit at C(1). *iii*) The correlation H-C(1'') ( $\delta$  4.67)/C(6') ( $\delta$  68.1) elucidated that the rhamnosyloxy unit was located at C(6'). iv) The correlations of the 2 MeO ( $\delta$  3.85) with C(2) and C(6) ( $\delta$ 154.5) established the position of the 2 MeO at C(2) and C(6).

Compound 9, an optically active white powder, exhibited a quasi-molecular ion  $[M+Na]^+$  at m/z 525 in the ESI-MS, suggesting a molecular formula  $C_{23}H_{34}O_{12}$ , which was confirmed by a quasi-molecular ion  $[M+Na]^+$  at m/z 525.1952 generated by HR-ESI-MS. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of 9 (see *Table 6*) were similar to those of 8 (*Table 6*), except for the signals of the side chain C(7) to C(9)<sup>1</sup>). The <sup>13</sup>C-NMR and HMBC spectra of 9 suggested the side chain to be a CH<sub>2</sub>=CH-CH<sub>2</sub> group ( $\delta$  41.5 (CH<sub>2</sub>(7)), 137.6 (CH(8)), 116.4 (CH<sub>2</sub>C(9)). The structure of 9 was confirmed by its <sup>1</sup>H,<sup>1</sup>H-COSY, HMQC, and HMBC spectra as 2,6-dimethoxy-4-(prop-2-enyl]phenyl *O*- $\alpha$ -L-rhamnopyranosyl-( $1 \rightarrow 6$ )- $\beta$ -D-glucopyranoside.

The ethyl esters 4, 6, and 7 may be artifacts formed from 1, 2, and 10, respectively, during the 7-day extraction of the plants with EtOH (see *Exper. Part*), and the methyl esters 3 and 5 may also be artifacts formed from 1 and 2 by nucleophilic opening of the  $\gamma$ -lactone moiety during column chromatography with MeOH.

|                       | 8                                  |                  |                        | 9                                                  |                                    |                 |
|-----------------------|------------------------------------|------------------|------------------------|----------------------------------------------------|------------------------------------|-----------------|
|                       | $\delta(\mathrm{H})^{\mathrm{a}})$ | $\delta(C)^{b})$ | HMBC°)                 | <sup>1</sup> H, <sup>1</sup> H-COSY <sup>a</sup> ) | $\delta(\mathrm{H})^{\mathrm{a}})$ | $\delta(C)^{b}$ |
| C(1)                  |                                    | 135.3            |                        |                                                    |                                    | 138.9           |
| C(2)                  |                                    | 154.5            |                        |                                                    |                                    | 154.3           |
| H-C(3)                | 6.66 (s)                           | 104.8            | C(1), C(2), C(4), C(7) | MeO                                                | 6.48 (s)                           | 107.4           |
| C(4)                  |                                    | 136.4            |                        |                                                    |                                    | 134.5           |
| H-C(5)                | 6.66 (s)                           | 104.8            | C(1), C(2), C(4), C(7) | MeO                                                | 6.48 (s)                           | 107.4           |
| C(6)                  |                                    | 154.5            |                        |                                                    |                                    | 154.3           |
| $H-C(7)$ or $CH_2(7)$ | 6.34(d, J = 15.6)                  | 132.2            | C(3), C(4), C(9)       |                                                    | 2.84(d, J = 6.3)                   | 41.5            |
| H–C(8)                | 6.23–6.26 ( <i>m</i> )             | 126.5            | C(4), C(9)             |                                                    | 5.05 - 5.07(m)                     | 137.6           |
| $Me(9)$ or $CH_2(9)$  | 1.85 (d, J = 6.3)                  | 18.7             | C(7), C(8)             |                                                    | 4.59-4.61 (m)                      | 116.4           |
| MeO                   | 3.85 (s)                           | 57.1             | C(2, C(3), C(5),       |                                                    | 3.85 (s)                           | 57.1            |
|                       |                                    |                  | C(6), C(3), C(5)       |                                                    |                                    |                 |
| H–C(1')               | 4.75 (d, J = 7.8)                  | 105.6            | C(1)                   |                                                    | 4.75(d, J=7.2)                     | 105.6           |
| H–C(2')               | 3.30-3.91 (m)                      | 75.7             |                        |                                                    | 3.30-3.91 (m)                      | 75.7            |
| H–C(3')               | 3.30-3.91 ( <i>m</i> )             | 77.9             |                        |                                                    | 3.30-3.91 (m)                      | 77.9            |
| H-C(4')               | 3.30-3.91 (m)                      | 71.8             |                        |                                                    | 3.30-3.91 (m)                      | 71.8            |
| H–C(5')               | 3.30-3.91 (m)                      | 77.4             |                        |                                                    | 3.30-3.91 (m)                      | 77.4            |
| CH <sub>2</sub> (6')  | 3.30-3.91 (m)                      | 68.1             |                        |                                                    | 3.30-3.91 (m)                      | 68.1            |
| H–C(1")               | 4.67 (s)                           | 102.2            | C(6')                  |                                                    | 4.67 (s)                           | 102.3           |
| H–C(2")               | 3.30-3.91 ( <i>m</i> )             | 72.4             |                        |                                                    | 3.30-3.91 ( <i>m</i> )             | 72.4            |
| H–C(3")               | 3.30-3.91 (m)                      | 72.2             |                        |                                                    | 3.30-3.91 (m)                      | 72.2            |
| H–C(4'')              | 3.30-3.91 (m)                      | 74.1             |                        |                                                    | 3.30-3.91 (m)                      | 74.1            |
| H-C(5")               | 3.30-3.91 (m)                      | 69.8             |                        |                                                    | 3.30-3.91 ( <i>m</i> )             | 69.8            |
| Me(6")                | 1.19 ( <i>d</i> , <i>J</i> =6.6)   | 18.2             |                        |                                                    | 1.19(d, J = 6.6)                   | 18.2            |

Table 6. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR*, *HMBC*, and <sup>1</sup>*H*, <sup>1</sup>*H*-*COSY* Data of **8** and <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR* Data of **9**<sup>1</sup>).  $\delta$  in ppm, *J* in Hz.

<sup>a</sup>) Recorded in CD<sub>3</sub>OD at 300 MHz. <sup>b</sup>) Recorded in CD<sub>3</sub>OD at 75 MHz. <sup>c</sup>) Protons that correlate with C-atoms.

Financial supports by the National Science Foundation (30371679) of P. R. China are gratefully acknowledged.

## **Experimental Part**

General. Column chromatography (CC): silica gel (200–300 mesh), Sephadex LH-20, macroporous resin AB-8 (from the Chemical Plant of Nankai University, Tianjin, China), MCI Gel CHP20P (75–150  $\mu$ m; Mitsubishi Chemical Industry, Ltd.), and C-18 reversed-phase silica gel (ODS; 20–45  $\mu$ m, Fuji Sily-sia Chemical, Ltd.). M.p.: Yanagimoto micromelting point apparatus; uncorrected. Optical rotations: in MeOH; Perkin-Elmer-341 polarimeter. UV Spectra:  $\lambda_{max}$  (log  $\varepsilon$ ) in nm. NMR Spectra: Bruker AMX-500 spectrometer. MS: Bruker Esquire-3000-plus spectrometer for ESI and Bruker Atex-III instrument for HR-ESI in MeOH; in m/z.

*Plant Material. Daphniphyllum Angustifolium* was collected in Nanchuan County, Chongqing City, People's Republic of China, in May, 2001. A voucher specimen of the plant (No. PA0501) was identified by Mr. *Jin-Gui Shen* and deposited at the herbarium of the Chinese National Center for Drug Screening, Shanghai, P. R. China.

*Extraction and Isolation.* The dried and powdered bark of *D. Angustifolium* (10.0 kg) were extracted with 95% EtOH ( $3 \times 35$  l) at r.t. for 7 days. The extract was evaporated and the residue partitioned between CHCl<sub>3</sub> (1.200 l) and H<sub>2</sub>O (2.000 l). The H<sub>2</sub>O-soluble portion (100 g) was then separated into

4 fractions by CC (macroporous resin, EtOH/H<sub>2</sub>O): Fr. 1 (15 g) with 15% EtOH (11), Fr. 2 (15 g) with 30% EtOH (11), Fr. 3 (30 g) with 60% EtOH (11), and Fr. 4 (5 g) with 100% EtOH (11). Fr. 4 (5 g) was subjected to CC (MCI, MeOH/H<sub>2</sub>O): Fr. 4.1 (850 mg) with 75% MeOH (11) and Fr. 4.2 (3 g) with 90% MeOH (11). Fr. 4.1 (850 mg) was further subjected to CC (ODS, 60% MeOH/H<sub>2</sub>O (31): 1 (73 mg) and 2 (69 mg). Fr. 3 (30 g) was subjected to CC (MCI, MeOH/H<sub>2</sub>O): Fr. 3.1 (1.5 g) with 45% MeOH (11), Fr. 3.2 (700 mg) with 55% MeOH (11), Fr. 3.3 (3 g) with 65% MeOH (11), and Fr. 3.4 (700 mg) with 80% MeOH (11). Fr. 3.1 (500 mg) was further subjected to CC (ODS, 20% (21), 25% MeOH/H<sub>2</sub>O (1 l)): 10-O-deacetylasperulosidic acid methyl ester (43 mg). Fr. 3.2 (700 mg) was further subjected to CC (ODS, 25% MeOH/H<sub>2</sub>O (3 l)): 3 (40 mg) and 4 (9 mg). Fr. 3.3 (500 mg) was further subjected to CC (ODS, 30% MeOH/H<sub>2</sub>O (21)): 5 (23 mg), 7 (12 mg), and 10 (100 mg). Fr. 3.4 (700 mg) was further subjected to CC (silica gel, CHCl<sub>3</sub>/MeOH 20:1): 6 (9 mg) and 10 (300 mg). Fr. 2 (15 g) was subjected to CC (MCI, MeOH/H<sub>2</sub>O): Fr. 2.1 (150 mg) with 25% MeOH (11), Fr. 2.2 (5 g) with 35% MeOH (21), and Fr. 2.3 (6 g) with 45% MeOH (11). Fr. 2.1 (150 mg) was further subjected to CC (ODS, 25% MeOH/H<sub>2</sub>O (21)): 8 (28 mg). Fr. 2.2 (500 mg) was further subjected to CC (ODS, 25% MeOH/H<sub>2</sub>O (21)): 9 (18 mg) and (-)-epiafzelechin 7-O- $\beta$ -D-glucopyranoside (55 mg). Fr. 2.3 (100 mg) was further subjected to CC (ODS, 25% MeOH/H<sub>2</sub>O (2 l): urolignoside (30 mg). The CHCl<sub>3</sub>-soluble portion (20 g) was subjected to CC (silica gel, CHCl<sub>3</sub>/MeOH): Fr. A (250 mg) with CHCl<sub>3</sub> (1 l), Fr. B (6 g) with CHCl<sub>3</sub>/MeOH 100:2 (1 l), and Fr. C (1 g) with CHCl<sub>3</sub>/MeOH 100:5 (1 l). Fr. A (250 mg) was subjected to CC (silica gel, petroleum ether/AcOEt 10:1: concarpan (34 mg). Fr. B (6 g) was subjected to CC (silica gel, petroleum ether/acetone): Fr. A.1 (120 mg) with petroleum ether/acetone 20:1 (11) and Fr. A.2 (90 mg) with petroleum ether/acetone 10:1 (21). Fr. A.1 was further subjected to CC (Sephadex LH-20, CHCl<sub>3</sub>/MeOH 1:1 (11): 28-hydroxylupen-3-one (11 mg) and stigmast-5-ene-3,7,16-triol (13 mg). Fr. A.2 (90 mg) was further subjected to CC (ODS, 55% MeOH/H<sub>2</sub>O (21): eupomatenoid-6 (29 mg).

10-O-Coumaroyl-10-O-deacetylasperuloside (=[(2a\$,4a\$,55,7b\$)-5-(β-D-Glucopyranosyloxy)-2a,4a, 5,7b,-tetrahydro-1-oxo-1H-2,6-dioxacyclopent[cd]inden-4-yl]methyl (2E)-3-(4-Hydroxyphenyl)prop-2-enoate; **1**): White powder. M.p. 65–66°.  $[a]_{D}^{20} = -96.1$  (c=0.60, MeOH). UV (MeOH): 222.8 (3.25), 312.5 (3.08). IR (KBr): 3411, 2923, 1739, 1656, 1604, 1516, 1261, 1168, 1074, 1020, 982, 833. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table 1. HR-ESI-MS: 519.1510 ( $[M+H]^+$ ,  $C_{25}H_{27}O_{12}^+$ ; calc. 519.1502).

10-O-Benzoyl-10-O-deacetylasperuloside (= (2a\$,4a\$,5\$,7b\$)-4-[(Benzoyloxy)methyl]-5-(β-D-glucopyranosyloxy)-2a,4a,5,7b,-tetrahydro-1H-2,6-dioxacyclopent[cd]inden-1-one; **2**): White powder. M.p. 78-80°. [a]<sub>D</sub><sup>20</sup> = -88 (c=0.07, MeOH). UV (MeOH): 202.5 (1.25), 231.0 (1.80). <sup>1</sup>H- and <sup>13</sup>C-NMR: Table 2. HR-ESI-MS: 499.1211 ([M+Na]<sup>+</sup>, C<sub>23</sub>H<sub>24</sub>NaO<sup>+</sup><sub>11</sub>; calc. 499.1216).

10-O-Coumaroyl-10-O-deacetyldaphylloside (= Methyl (1S,4aS,5S,7aS)-1-( $\beta$ -D-Glucopyranosyloxy)-1,4a,5,7a,-tetrahydro-5-hydroxy-7-{{[(2E)-3-(4-hydroxyphenyl)-1-oxoprop-2-enyl]oxy}methyl}cyclopen-ta[c]pyran-4-carboxylate; **3**): White powder. M.p. 67–68°. [a]<sub>20</sub><sup>20</sup> = +5 (c=0.23, MeOH). UV (MeOH): 225.8 (0.71), 316.5 (0.75). IR (KBr): 3427, 2922, 1695, 1633, 1604, 1516, 1440, 1275, 1169, 1076, 833, 519. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table 3. HR-ESI-MS: 573.1580 ([M+Na]<sup>+</sup>, C<sub>26</sub>H<sub>31</sub>NaO<sup>+</sup><sub>13</sub>; calc. 573.1579).

10-O-Coumaroyl-10-O-deacetyl-11-demethoxy-11-ethoxydaphylloside (= Ethyl (1S,4aS,5S,7aS)-1-( $\beta$ -D-Glucopyranosyloxy)-1,4a,5,7a,-tetrahydro-5-hydroxy-7-{{[(2E)-3-(4-hydroxyphenyl)-1-oxoprop-2-enyl]oxy}methyl}cyclopenta[c]pyran-4-carboxylate; **4**): White powder. M.p. 66–68°. [ $\alpha$ ]<sub>D</sub><sup>20</sup> = -7 (c=0.24, MeOH). UV (MeOH): 225.0 (0.70), 316.2 (0.74). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 4* and 5. HR-ESI-MS: 563.1770 ([M-H]<sup>-</sup>, C<sub>27</sub>H<sub>33</sub>O<sub>13</sub>; calc. 563.1765).

10-O-Benzoyl-10-O-deacetyldaphylloside (=Methyl (1\$,4a\$,5\$,7a\$)-7-[(Benzoyloxy)methyl]-1-( $\beta$ -D-glucopyranosyloxy)-1,4a,5,7a,-tetrahydro-5-hydroxycyclopenta[c]pyran-4-carboxylate; **5**): White powder. M.p. 65-67°. [a]<sub>D</sub><sup>2</sup>=+3 (c=0.09, MeOH). UV (MeOH): 202.0 (0.63), 232.0 (1.36). <sup>1</sup>H- and <sup>13</sup>C-NMR: Tables 4 and 5. HR-ESI-MS: 509.1663 ([M+H]<sup>+</sup>, C<sub>24</sub>H<sub>27</sub>O<sub>17</sub>; calc. 509.1659).

10-O-Benzoyl-10-O-deacetyl-11-demethoxy-11-ethoxydaphylloside (=Ethyl (15,4a5,55,7a5)-7-[(Benzoyloxy)methyl]-1-(β-D-glucopyranosyloxy)-1,4a,5,7a,-tetrahydro-5-hydroxycyclopenta[c]pyran-4carboxylate; **6**): White powder. M.p. 70–72°.  $[\alpha]_D^{20} = -9$  (c=0.16, MeOH). UV (MeOH): 204.0 (0.73), 231.8 (1.18). <sup>1</sup>H- and <sup>13</sup>C-NMR: Tables 4 and 5. HR-ESI-MS: 567.1710 ([M+COOH]<sup>-</sup>, C<sub>26</sub>H<sub>31</sub>O<sub>14</sub><sup>-</sup>; calc. 567.1714). 11-Demethoxy-11-ethoxydaphylloside (= Ethyl (1S,4aS,5S,7aS)-7-[(Acetyloxy)methyl]-1-(β-D-glucopyranosyloxy)-1,4a,5,7a,-tetrahydro-5-hydroxycyclopenta[c]pyran-4-carboxylate; **7**): White powder. M.p. 63–65°. [a]<sub>20</sub><sup>20</sup> = -10 (c=0.20, MeOH). UV (MeOH): 203.0 (0.46), 233.0 (0.53). <sup>1</sup>H- and <sup>13</sup>C-NMR: Tables 4 and 5. HR-ESI-MS: 461.1664 ([M+H]<sup>+</sup>, C<sub>20</sub>H<sub>29</sub>O<sub>12</sub>; calc. 461.1659).

2,6-Dimethoxy-4-[(1E)-prop-1-enyl]phenyl  $\alpha$ -L-Rhamnopyranosyl-(1  $\rightarrow$  6)- $\beta$ -D-glucopyranoside (8): White powder. M.p. 180–182°. [a]<sub>D</sub><sup>20</sup> = -37 (c=0.16, MeOH). UV (MeOH): 216.0 (2.40). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table* 6. HR-ESI-MS: 503.2124 ([M+H]<sup>+</sup>, C<sub>23</sub>H<sub>35</sub>O<sup>+</sup><sub>1</sub>; calc. 503.2129).

2,6-Dimethoxy-4-(prop-2-enyl)phenyl  $\alpha$ -L-Rhamnopyranosyl-( $1 \rightarrow 6$ )- $\beta$ -D-glucopyranoside (9): White powder. M.p. 206–207°. [a]<sub>D</sub><sup>20</sup> = -62 (c=0.26, MeOH). UV (MeOH): 217.0 (2.40). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table 6*. HR-ESI-MS: 503.2124 ([M+H]<sup>+</sup>, C<sub>23</sub>H<sub>35</sub>O<sub>1</sub><sup>+</sup>; calc. 503.2129).

Acid Hydrolysis of Compounds 1-9 [10]. A compound 1-9 (4 mg) in 10% HCl soln./dioxane (1:1, (1 ml) was heated separately at 80° for 4 h in a water bath. The mixture was neutralized with Ag<sub>2</sub>CO<sub>3</sub>, filtered, and then extracted with CHCl<sub>3</sub> (3×1 ml). The H<sub>2</sub>O layer was evaporated and the residue (monosaccharide portion) examined by TLC (CHCl<sub>3</sub>/MeOH/H<sub>2</sub>O 55:45:10) and compared with authentic samples.

Determination of the Sugar Components [10]. The monosaccharide units were obtained by hydrochloric acid hydrolysis as described above. The sugar residue was then dissolved in of H<sub>2</sub>O (2 ml), NaBH<sub>4</sub> (15 mg) was added, and the mixture was left to stand for 2 h at r.t. Several drops of 25% AcOH were added until the pH value was 4–5. After co-distillation with MeOH to remove the extra boracic acid and H<sub>2</sub>O, the resulting product was dried overnight in a vacuum desiccator and then heated at 110° for 15 min to further remove H<sub>2</sub>O. Next, Ac<sub>2</sub>O (3 ml) was added and the soln. kept at 100° for 1 h. Then the soln. was cooled and co-distilled with toluene several times. The acetate derivative was dissolved in CHCl<sub>3</sub> and the soln. washed with dist. H<sub>2</sub>O, dried (Na<sub>2</sub>SO<sub>4</sub>), and then concentrated to 0.1 ml. The acetate derivatives were subjected to GC (column temp. 210°; injection temp. 250°; carrier gas N<sub>2</sub>, flow rate 25 ml/min):  $t_{\rm R}$  17.38 min for derivative of D-glucose and 4.85 min for derivative of L-rhamnose.

## REFERENCES

- [1] S. G. H. Inouye, M. Hirabayashi, N. Shimokawa, Yakugaku Zasshi 1966, 86, 943.
- [2] Z.-J. Zhan, C.-R. Zhang, J.-M. Yue, Tetrahedron 2005, 61, 11038.
- [3] K. Ishiguro, M. Yamaki, S. Takagi, J. Nat. Prod. 1983, 46, 532.
- [4] M. Yamanaka, K. Shimomura, K. Sasaki, K. Yoshihira, K. Ishimaru, Phytochemistry 1995, 40, 1149.
- [5] Y. C. Shen, P.-W. Hsieh, Y.-H. Kuo, Phytochemistry 1998, 48, 719.
- [6] D.-C. Chauret, C. B. Bernard, J. T. Arnason, T. Durst, H. G. Krishnamurty, P. Sanchez-Vindas, N. Moreno, L. San Roman, L. Poveda, J. Nat. Prod. 1996, 59, 152.
- [7] W. F. Tino, L. C. Blair, A. Alli, W. F. Reynolds, S. McLean, J. Nat. Prod. 1992, 55, 395.
- [8] X. D. Luo, S. H. Wu, Y. B. Ma, D. G. Wu, Chin. Chem. Lett. 2000, 11, 535.
- [9] L. H. Briggs, B. F. Cain, P. W. Le Quesne, J. N. Shoolery, Tetrahedron Lett. 1963, 2, 69.
- [10] A. Ito, H.-B. Chai, L. B. S. Kardono, F. M. Setowati, J. J. Afriastini, S. Riswan, N. R. Farnsworth, G. A. Cordell, J. M. Pezzuto, S. M. Swanson, A. D. Kinghorn, J. Nat. Prod. 2004, 67, 201.

Received December 12, 2005